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In a small fraction of Xenopus tadpoles, a single retinal ganglion
cell (RGC) axon misprojects to the ipsilateral optic tectum. Presenting
flashes of light to the ipsilateral eye causes that ipsilateral axon to
fire, whereas stimulating the contralateral eye excites all other RGC
inputs to the tectum. We performed time-lapse imaging of individual
ipsilaterally projecting axons while stimulating either the ipsilateral
or contralateral eye. Stimulating either eye alone reduced axon elab-
oration by increasing branch loss. New branch additions in the ipsi
axon were exclusively increased by contralateral eye stimulation,
which was enhanced by expressing tetanus neurotoxin (TeNT) in
the ipsilateral axon, to prevent Hebbian stabilization. Together, our
results reveal the existence of a non−cell-autonomous “Stentian”
signal, engaged by activation of neighboring RGCs, that promotes
exploratory axon branching in response to noncorrelated firing.
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Patterned neural activity instructs refinement of axons and
dendrites in developing circuits (1). How activity patterns translate

into structural remodeling remains an important question. Hebbian
plasticity, in which synaptic contacts are strengthened and maintained
when the presynaptic cell participates in firing the postsynaptic cell,
has been proposed as a mechanism to fine-tune connections (2–6).
A recent study in the developing retinotectal system of Xenopus

tadpoles used patterned visual stimulation to drive individual reti-
nal ganglion cell (RGC) axons to fire either synchronously or
asynchronously relative to other inputs (7). Consistent with Hebbian
plasticity, synchronous firing resulted in synaptic strengthening
and structural stabilization of the axon arbor. Furthermore, asyn-
chronous, alternating activation of inputs caused synaptic de-
pression and up-regulated axonal exploratory branch dynamics.
This phenomenon of “fire out-of-sync, lose your link” had been
predicted as an extension of Hebb’s rule in an influential mono-
graph by Gunther Stent (8).
Alternating stimulation involves two parts: 1) axon activation

while surrounding inputs are silent and 2) axon inactivity while
surrounding inputs are stimulated. The previous study did not
resolve which of these two components induced the exploratory ax-
onal growth. Using the same experimental preparation, we now in-
dependently assess the effects of activating either the axon of interest
or neighboring inputs. We found that axonal branch losses increase
when either the axon of interest or its neighbors are driven, but the
increase in new branch additions is exclusively induced by a non−cell-
autonomous signal associated with the firing of neighboring cells.
The developing retinotectal system of the translucent albino

Xenopus laevis tadpole provides a useful model for in vivo imaging
(9). Although nearly all Xenopus RGC axons project contralaterally,
a single ectopic ipsilateral (ipsi) axon, targeted to the wrong hemi-
sphere, is found in about 20% of animals (7) (Fig. 1 A and B). We
exploited ipsi RGC axons to visually stimulate single retinotectal
axons independently of their neighboring inputs.
We screened tadpoles, electroporated to express EGFP in one

eye, for the presence of an ipsi RGC axon and performed in vivo
two-photon imaging every 10 min while presenting visual stimuli.

The experimental paradigm consisted of 1 h of darkness followed
by 2 h of monocular light flashes (10 ms at 0.5 Hz) to either the
contralateral (contra) or ipsi eye (Fig. 1C). Stimulating the contra eye
alone activates many axons, and postsynaptic partners, around the
single ipsi axon being imaged, and thus tests how activity of sur-
rounding inputs modulates axonal growth and dynamics. Conversely,
ipsi eye stimulation activates just the single axon without its neighbors.
Ipsi eye stimulation resulted in simpler arbors (Fig. 1 D–H),

with fewer branch tips (Fig. 1F) and reduced branch density (Fig.
1H) after 2 h compared to contra eye stimulation. While stim-
ulation of either eye reduced the rate of axon branch accumu-
lation compared to RGC axon growth in darkness, activation of
the ipsi eye caused a greater reduction in branch elaboration,
resulting in a loss of branch tip number over time (Fig. 1I).
While visual stimulation caused no significant differences in

branch addition (mean number of new branch tips every 10 min,
normalized to 1 h of darkness) or elongation (mean length added
every 10 min on growing branches, normalized to 1 h of dark-
ness) (Fig. 1 J and K), visual stimulation through either eye
significantly increased rates of branch loss and retraction relative
to baseline in darkness (Fig. 1 L and M). Thus, activating
neighboring inputs increased addition and loss rates comparably,
maintaining arbor complexity, whereas stimulation of the axon of
interest reduced arbor complexity by shifting the balance to favor
branch loss over addition (Fig. 1 F and H).
In prior studies, synaptic activation of N-methyl-D-aspartate re-

ceptors decreased axon branch addition rates, suggesting Hebbian
stabilization (7, 10). Expressing tetanus neurotoxin (TeNT) to block
transmission from RGC axons eliminated this branch suppression
and unmasked an activity-dependent up-regulation in axon branch
additions (7, 11). To remove confounding influences of the stabi-
lization signal, we tested the effects of ipsi versus contra eye stim-
ulation on TeNT-expressing axons.
When blocking vesicular release in the ipsi axon, contra eye

stimulation increased the rate of new branch additions and
elongation compared to darkness, whereas ipsi eye stimulation
had little impact (Fig. 2 A–F). Branch loss was significantly up-
regulated with contra eye stimulation, and, to a lesser extent,
with ipsi eye stimulation (Fig. 2 G and H), which enhanced
branch retraction (Fig. 2 I and J). In summary, axon branching
and elongation were up-regulated by stimulating the surrounding
contra eye axons and not by stimulating the ipsi axon. Branch
elimination was increased by stimulating either eye, with re-
tractions significantly enhanced by ipsi eye stimulation.
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These experimental findings support a model in which firing
up-regulates branch loss in general, but activity of nearby axons
also generates a signal that promotes new branch formation in
noncoactive axons. Thus, axons exhibit exploratory branch dy-
namics (both formation and elimination of branches) under
conditions of uncorrelated firing.
In an earlier study when contra and ipsi eyes were synchronously

stimulated, synaptic strength was maintained and exploratory
branch remodeling was down-regulated, indicative of a Hebbian
stabilization mechanism (7). In contrast, asynchronous stimulation
of the eyes weakened synaptic inputs and destabilized axon

branches. Such findings support Stent’s corollary that synaptic ef-
ficacy may be reduced when there is postsynaptic activity without
concurrent presynaptic firing (8, 12, 13). Our results provide direct
evidence for an intercellular “Stentian” signal that promotes an
axon’s elaboration when other inputs repeatedly and persistently
fire without it, forcing it to seek out more appropriate contacts
elsewhere through exploratory growth.

Methods
Animals were maintained at 18 °C to 21 °C with a 12-h/12-h light−dark cycle.

We performed plasmid electroporation as described previously (7), using
1.5 μg/μL to 2 μg/μL pEGFP-N1 or 5UAS-TeNT-Lc:EGFP (TeNT) + pbGAL4-VP16
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Fig. 1. Ipsi RGC axons respond differentially to simulation of the ipsi and contra eyes. (A) EGFP-electroporated eye (green) projecting to BODIPY-labeled tectum
(red). (B) Ipsi RGC axon from rectangle in A. (C) Experimental protocol: ipsi axon imaged every 10 min over 1-h baseline in darkness and 2-h visual stimulation of the
ipsi or contra eye via optical fiber. (D and E) Ipsi RGC axon arbors undergoing (D) contra eye stimulation or (E) ipsi eye stimulation in the tectum. Reconstructed
arbors show cumulative changes during 1 h in darkness and the last hour of stimulation, indicating added or elongated (magenta), lost or retracted (green), and
transient (both added or elongated and lost or retracted within 1 h, blue) branch tips. (F) Total branch tip number (TBTN) normalized to initial number. (G) Total
branch length (TBL) normalized to initial length. (H) Branch density (branch number/total length) normalized to initial density. (I) Net change in TBTN every 10 min
binned by hour. (J) Mean number of branch additions every 10 min normalized to mean additions in darkness. (K−M) Data binned as in J for (K) elongation (mean
length added every 10min of growing branches, normalized to elongation in darkness), (L) losses, and (M) retraction. All graphs present ipsi axons from contra-eye-
stimulated (n = 10, dark green) and ipsi-eye-stimulated (n = 7, light green) animals. Mixed-design two-way ANOVA, Bonferroni’s post hoc test to compare hours is
indicated above bar graphs, and interaction of time vs. eye stimulated is indicated to the right of time plots (*P < 0.05, **P < 0.01, ***P < 0.001).
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injected into the eyes of stages 39 to 40 albino X. laevis tadpoles. Animals
were anesthetized in 0.02% MS-222 before electroporation.

Electroporated tadpoles were screened for single ipsi RGC axons 3 d to
4 d later around stages 46 to 48 and immobilized for imaging by in-
traperitoneal injection of d-tubocurarine (2.5 mM). They were placed into a
custom polydimethylsiloxane chamber or embedded in 1.8% [wt/vol] low-
melt agarose under a coverslip and perfused with oxygenated 0.1×
modified Barth’s solution with Hepes. Animals stabilized for 30 min in
darkness before imaging. A BFL48-400 optical fiber (Thorlabs) was used to
stimulate the ipsi or contra eye with Red Rebel LEDs (Luxeon Star) controlled
by a STG4002 stimulus generator (Multichannel Systems). Multiphoton z
series were collected at 1-μm intervals every 10 min using an Olympus 20×
immersion objective (1.0 numerical aperture) on a Thorlabs resonant scan-
ning two-photon microscope. The 910-nm excitation was provided by a
Spectra Physics Maitai BB Ti:sapphire pulsed laser.

Statistical tests were performed using Prism 7.0 (Graphpad). Normality of
the data distributions was confirmed using the Shapiro−Wilk test. Error bars
indicate SEM. All animal experiments were approved by the Animal Care
Committee of the Montreal Neurological Institute-Hospital.

Data Availability. Original data and detailed methods have been uploaded,
for public access, to https://figshare.com/projects/Stentian_structural_plasticity_
in_the_developing_visual_system/78012 (14).
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Fig. 2. TeNT expression in ipsi RGC axon enhances dynamic branch additions in response to contra, but not ipsi, eye stimulation. (A and B) TeNT-expressing
ipsi RGC axon arbors undergoing (A) contra eye stimulation or (B) ipsi eye stimulation. Reconstructed arbors show cumulative changes during 1 h in darkness
and the last hour of stimulation. (C and D) Mean branch additions every 10 min, (C) normalized to mean additions in darkness and (D) binned by hour. (E–J)
Corresponding graphs for (E and F) branch elongation, (G and H) losses, and (I and J) retraction. All graphs present TeNT-expressing ipsi axons from contra-
eye-stimulated (n = 7, dark blue) and ipsi-eye-stimulated animals (n = 9, light blue). Mixed-design two-way ANOVA to compare hours is indicated above bar
graphs, and interaction of time vs. eye stimulated is indicated to the right of time plots (*P < 0.05, **P < 0.01).
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